⑴ 对称点坐标公式秒杀
设(X,Y)关于(A,B)的对称点为(X’,Y’)
则有X+X’=2A,Y+Y’=2B
所以X’=2A-X,Y’=2B-Y
所以(X,Y)关于(A,B)的对称点为
(2A-X,2B-Y)
⑵ 23x35等于多少有秒杀公式吗
23x35=(20+3)x35=20x35+3x35=700+105=805
⑶ 抛物线秒杀公式什么等于二p分之一
抛物线基本四种形式如图,2p分之一如图所示详细,供参考。
⑷ 错位相减法秒杀公式当b等于0时还能用吗,如求bn=n/2*3^n-1前n项和
^^bn=n/2*3^自(n-1)前n项和
Sn=b1+b2+……+bn
=(1/2)[1+2*3+3*3^2+……+n-*3^(n-1)],①
3Sn=(1/2)[..3+2*3^2+……+(n-1)*3^(n-1)+n*3^n],②
①-②,得-2Sn=(1/2)[1+3+3^2+……+3^(n-1)-n*3^n]
=(1/2)[(1-3^n)/(1-3)-n*3^n]
=(-1/4)[1+(2n-1)*3^n],
所以Sn=(1/8)[1+(2n-1)*3^n].
可以吗?
在本题,b0=0,没必要写出来。
⑸ 二项式定理的秒杀公式是什么
扩展一点说→《排列、组合、二项式定理》秒杀公式秘诀
加法乘法回两原理,贯穿始终答的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
⑹ 怎样秒杀高考数学导数,有木有牛逼的公式
1. 了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2. 熟记基本导数公式;掌握两个函数和、差、积、商的求导法则。了解复合函数的求导法则,会求某些简单函数的导数。
3. 理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
考点一:导数的概念
对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.
本题主要考查函数的导数和计算等基础知识和能力.
考点二:曲线的切线
1. 关于曲线在某一点的切线
求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.
2. 关于两曲线的公切线
若一直线同时与两曲线相切,则称该直线为两曲线的公切线.
本题主要考查函数的导数和直线方程等基础知识的应用能力.
本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.
典型例题1:
⑺ MBA逻辑推理里的推理秒杀公式是什么
逻辑方正图